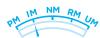


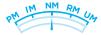
RightMed[®] Gene Report

Patient and report summary

Patient name: Sample Patient Patient date of birth: 1977-09-02 OneOme report date: 2023-11-29 Ordering provider: Sample Doctor Ordering facility: Sample Clinic (US) Report type: Specialty


Phenotype icon legend for CYP genes

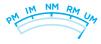
CYP phenotype, or metabolizer status, is determined by the total predicted activity of the gene based on the genotype, and is represented by a gauge icon. Total predicted activity which falls between phenotypes will be reported as a range phenotype.


Poor metabolizer

No to very low activity. Drugs converted to active metabolite(s) may have reduced efficacy. Active drugs converted to inactive metabolite(s) may cause side effects or toxicity.

Intermediate metabolizer

Decreased activity. Drugs converted to active metabolite(s) may have reduced efficacy. Active drugs converted to inactive metabolite(s) may cause side effects or toxicity.


Normal metabolizer

Normal level of activity. Drugs metabolized at a normal rate.

Rapid metabolizer

Increased activity. Drugs converted to active metabolite(s) may cause side effects or toxicity. Active drugs converted to inactive metabolite(s) may lack efficacy.

Ultrarapid metabolizer

Increased activity. Drugs converted to active metabolite(s) may cause side effects or toxicity. Active drugs converted to inactive metabolite(s) may lack efficacy.

Phenotype icon legend for other genes

Phenotype icons for other genes represent the extent of impact of the genotype on protein activity, expression, or function, and/or observed clinical impact (e.g., adverse event risk).

Atypical

Genotype indicates an absence of or major increase in protein activity, expression, or function.

Atypical

Genotype indicates a moderate loss of or increase in protein activity, expression, or function.

Typical

Genotype indicates normal or typical protein activity, expression, or function.

Report and laboratory comments

Interpretive guidance

Hemizygous males and homozygous females are reported as HTR2C CC.

The reported NUDT15 genotype was inferred based on available variant data. The *2 and *3 alleles are detected by the rs116855232 variant; however, both alleles have no function and *2 is defaulted as *3. Please contact OneOme with any additional questions.

Gene and phenotype summary

Gene	Genotype		Phenotype summary / Metabolic status
CYP1A2	*1A/*1A	PM IM NM RM UN	Normal metabolizer Fully functional enzyme activity is likely based on the genotype results. Normal metabolism of the medication affected by this gene is predicted.
CYP2B6	*1/*1	PM IM NM RM UN	Normal metabolizer Fully functional enzyme activity is likely based on the genotype results. Normal metabolism of the medication affected by this gene is predicted.
CYP2C9	*1/*1	PM IM NM RM UN	Normal metabolizer Fully functional enzyme activity is likely based on the genotype results. Normal metabolism of the medication affected by this gene is predicted.
CYP2C19	*1/*17	PM IM NM RM UN	Rapid metabolizer Increased enzyme activity is likely based on the genotype results. This activity is more than a normal metabolizer, but less than an ultrarapid metabolizer. The metabolism of the medication affected by this gene is predicted to be increased.
CYP2C Cluster	rs12777823 GG		Normal CYP2C rs12777823 homozygous wild-type genotype consistent with normal clearance of a certain medication, independent of the impact of CYP2C9*2 and *3. CYP2C rs12777823, together with CYP4F2, CYP2C9, and VKORC1, may affect treatment management of a certain medication.
CYP2D6	*3/*3	PM IM NM RM US	Poor metabolizer Little to no enzyme activity is likely based on the genotype results. Little to no metabolism of the medication affected by this gene is predicted.
СҮРЗА4	*1/*1	PM IM NM RM UN	Normal metabolizer Fully functional enzyme activity is likely based on the genotype results. Normal metabolism of the medication affected by this gene is predicted.

Gene and phenotype summary (cont.)

СҮРЗА5	*3/*3	PM IM NM RM UA	Poor metabolizer This CYP3A5 genotype is associated with the phenotype most prevalent in studies used to define standard dosing guidelines.
CYP4F2	*1/*1		Normal activity Genotype consistent with normal activity of the CYP4F2 enzyme, which catalyzes the metabolism of vitamin K, in counterpoint to the activity of VKORC1. CYP4F2, together with CYP2C9, VKORC1, and a variant in CYP2C Cluster, may affect treatment management of a certain medication.
СОМТ	rs4680 AA		Low activity The AA (Met/Met) genotype is associated with lower COMT activity than the GG (Val/Val) or GA (Val/Met) genotypes.
DPYD	*1/*1		Normal metabolizer DPD activity score= 2. This genotype and activity score is consistent with a normal metabolizer phenotype.
DRD2	rs1799978 AA		Normal receptor expression Homozygous wild-type dopamine receptor D2 (DRD2) rs1799978 AA genotype is consistent with normal receptor expression.
F2	rs1799963 GG		Normal risk Normal risk of thrombosis associated with Factor II (prothrombin). Other genetic and clinical factors contribute to the risk for thrombosis.
F5	rs6025 GG		Normal risk Normal risk of thrombosis associated with Factor V. Other genetic and clinical factors contribute to the risk for thrombosis.
GRIK4	rs1954787 TT	\bigwedge	Altered receptor function Homozygous variant glutamate ionotropic receptor kainate type subunit 4 (GRIK4) genotype is consistent with altered receptor function.
HLA-A	Negative		Normal risk Negative for the presence of the HLA-A*31:01 allele. Normal risk of hypersensitivity induced by certain medications, and possibly others of structural similarity. Hypersensitivity and severe cutaneous reactions may occur regardless of the presence of the HLA-A*31:01 allele, in particular the presence of the HLA-B*15:02 allele is associated with severe cutaneous reactions induced by certain medications.

Gene and phenotype summary (cont.)

HLA-B	Negative	Normal risk Negative for presence of the HLA-B*15:02, HLA-B*57:01, and HLA- B*58:01 alleles. Normal risk of hypersensitivity, severe cutaneous reactions, and severe hepatotoxicity induced by certain medications. Hypersensitivity, severe cutaneous reactions, and severe hepatotoxicity may occur regardless of the presence of HLA-B*15:02, HLA-B*57:01, or HLA-B*58:01 alleles. In particular, the presence of the HLA-A*31:01 allele is associated with hypersensitivity reactions induced by a certain medication, and possibly other medications of structural similarity.
HTR2A	rs7997012 AA	Intron 2 genotype AA Homozygous wild-type HTR2A (5-hydroxytryptamine receptor 2A) genotype is consistent with normal HTR2A receptor function.
HTR2C	rs3813929 CC	Normal receptor expression This genotype is associated with normal transcriptional activity of the HTR2C gene.
IFNL4	rs12979860 CC	Normal Genotype consistent with a normal likelihood of hepatitis C sustained virologic response (SVR) with certain treatment options.
NUDT15	*1/*3	Intermediate metabolizer NUDT15 genotype is consistent with impaired enzyme activity and is associated with an increased risk of thiopurine-induced toxicities.
OPRM1	rs1799971 AA	Variant absent The AA genotype (or Asn/Asn isoform) is the wildtype genotype associated with the mu-1 opioid receptor.
SLC6A4	L/L (La/La)	Typical to increased expression Genotype consistent with a typical to increased expression of the SLC6A4 transporter compared to other genotypes. This genotype was shown to exhibit different phenotypes in East Asian populations, as opposite outcomes were observed for this genotype in East Asian populations when compared to Caucasian populations.
SLCO1B1	*5/*5	Poor function SLCO1B1 genotype consistent with poor function of the OATP1B1 transporter.
TPMT	*1/*1	Normal metabolizer TPMT genotype is consistent with a normal metabolizer phenotype and is not associated with an increased risk of thiopurine-induced toxicities. Toxicities with thiopurines can occur due to impaired NUDT15 activity independently from the TPMT activity.

Gene and phenotype summary (cont.)

UGT1A1	*1/*28	Intermediate metabolizer (Heterozygous *28) Genotype consistent with decreased UGT1A1 enzyme activity, or an intermediate metabolizer phenotype, and is associated with an increased risk of certain drug-induced toxicities.
VKORC1	rs9923231 GG	Normal activity Genotype consistent with normal activity of the vitamin K epoxide reductase enzyme, associated with c1639GG (rs9923231). VKORC1, together with CYP2C9, CYP4F2, and a variant in CYP2C Cluster, may affect treatment management of a certain medication.

Test information

Clinical testing performed by: OneOme 807 Broadway St. NE Suite 100 Minneapolis, MN 55412, United States Reported by: Cathryn Jennissen in None CLIA: 24D2109855 CAP: 9432670 NY PFI: 9226

Specimen type: Buccal swab Collection date: 2023-11-27 Receive date: 2023-11-29

Specimen ID: 2350706821927

Test results

The following analytical results were interpreted by OneOme to produce the pharmacogenomic interpretations and annotations described in the *Gene and phenotype summary*. Method-specific analytical limitations or inferred haplotypes may limit the ability to produce a definitive phenotype interpretation. See *Methodology and limitations* and/or the *Report and laboratory comments* sections for additional information.

CYP1A2 *1A	/*1A		rs765776661	NM_000106.5:c.1411_1412insTGCCCACTG	GTGCCCACGTGCC AC
rs762551	NM_000761.4:c9-154C>A	СС	rs5030656	NM_000106.5:c.841_843deIAAG	AAGAAG
rs2069514	NG_008431.2:g.28338G>A	GG	rs35742686	NM_000106.5:c.775delA	
rs2069526	NM_000761.4:c10+103T>G	TT	rs72549353		AACTAACT
rs12720461	NM_000761.4:c10+113C>T	CC	rs5030655	 NM_000106.5:c.454delT	тт
rs35694136	NM 000761.4:c1635delT	TT	rs774671100	NM_000106.5:c.137_138insT	
	_		rs1080985	NM_000106.5:c1584C>G	сс
CYP2B6 *1/*	*1		rs59421388	NM_000106.5:c.1012G>A	GG
rs3745274	NM_000767.4:c.516G>T	GG	rs28371725	NM_000106.5:c.985+39G>A	GG
rs2279343	NM_000767.4:c.785A>G	AA	rs72549346	NM_000106.5:c.1088_1089insGT	
	—		rs5030865	NM_000106.5:c.505G>[A,T]	GG
rs34223104	NM_000767.5:c82T>C	TT			
rs3211371	NM_000767.4:c.1459C>T	CC	CYP3A4 *1/*	1	
rs36079186	NM_000767.5:c.593T>C	TT			
rs28399499	NM_000767.4:c.983T>C	TT	rs2740574	NM_017460.5:c392G>A	AA
			rs35599367	NM_017460.5:c.522-191C>T	CC
CYP2C9 *1/	*1				
rs7900194	NM_000771.3:c.449G>A	GG	CYP3A5 *3/	*3	
rs1799853	NM_000771.3:c.430C>T	CC	rs776746	NM_000777.4:c.219-237G>A	GG
s1057910	NM_000771.3:c.1075A>C	AA	rs10264272	NM_000777.4:c.219-2376-24	GG
s28371686	NM_000771.3:c.1080C>G	CC	rs41303343	—	
s56165452	NM_000771.3:c.1076T>C	TT	1541505545	NM_000777.4:c.1035_1036insT	
s28371685	NM_000771.3:c.10781>C	CC		4	
			CYP4F2 *1/*	1	
rs9332131	NM_000771.3:c.817delA	AA	rs2108622	NM_001082.4:c.1297G>A	GG
CYP2C19 *1	/*17		COMT_rs468	_	
rs12248560	NM_000769.2:c806C>T	ст		50 AA	
rs4244285	NM_000769.2:c.681G>A	GG	rs4680	NM_000754.3:c.472G>A	AA
rs4986893	NM_000769.2:c.636G>A	GG			
rs6413438	NM_000769.2:c.680C>T	CC	DPYD *1/*1		
s28399504	NM_000769.2:c.1A>G	AA			
526599504	NW_000769.2.C.IA/G	AA	rs75017182	NM_000110.4:c.1129-5923C>G	CC
	er rs12777823 GG		rs55886062	NM_000110.3:c.1679T>G	TT
CTF2C Clust	el 1512777823 66		rs67376798	NM_000110.3:c.2846A>T	TT
rs12777823	NC_000010.10:g.96405502G>A	GG	rs3918290	NM_000110.3:c.1905+1G>A	GG
	·· · · · · · · · · · · · · · · · · ·		rs115232898	NM_000110.4:c.557A>G	AA
CYP2D6 *3/	/*3		DRD2 rs179	9978 ^ ^	
rs28371706	NM_000106.5:c.320C>T	сс			
rs267608319	NM_000106.5:c.1319G>A	GG	rs1799978	NM_000795.3:c585A>G	AA
rs16947	NM_000106.5:c.886C>T	CC			
rs79292917	NM_000106.5:c.975G>A	GG	F2 rs179996	53 GG	
s1065852	NM_000106.5:c.100C>T	CC			
s1135840	NM_000106.5:c.1457G>C	GG	rs1799963	NM_000506.4:c.*97G>A	GG
	—				
s3892097	NM_000106.5:c.506-1G>A	GG	F5 rs6025 0	GG	
s769258	NM_000106.5:c.31G>A	GG			
s5030862	NM_000106.5:c.124G>A	GG	rs6025	NM_000130.4:c.1601G>A	GG
s201377835	NM_000106.5:c.181-1G>C	GG	001//	4707 77	
rs5030867	NM_000106.5:c.971A>C	AA	GRIK4 rs195	4/8/11	

Test results (cont.)

rs1954787	NM_001282470.2:c.83-10039T>C	TT	SLC6A4 L/L	(La/La)	
HLA-A Neg	ative		rs25531	NM_001045.5:c1936A>G	AA
HLA00097	NM_002116 (interrogated at exon 2)	Negative	rs774676466	NM_001045.5:c19171875del43	LL
	····· <u>-</u> 00 <u>-</u> ···(······ <u>0</u> <u>-</u> uter at over <u>-</u>)	rioganio	SLCO1B1 *5/	/*5	
HLA-B Neg	ative				
rs144012689		TT	rs2306283	NM_006446.4:c.388A>G	AA
HLA00386	NM_005514.7:c.1012+104A>T		rs4149056	NM_006446.4:c.521T>C	CC
HLA00386	NM_005514 (interrogated at exon 2 and intron 2)	Negative	rs4149015	NM_006446.4:c910G>A	GG
HLA00381	NM_005514 (interrogated at exon 3)	Negative	TPMT *1/*1		
HTR2A rs79	997012 AA		rs1142345	NM_000367.3:c.719A>G	AA
			rs1800584	NM_000367.3:c.626-1G>A	CC
rs7997012	NM_000621.4:c.614-2211T>C	TT	rs1800462	NM_000367.3:c.238G>C	GG
HTR2C rs3	813030 CC		rs1800460	NM_000367.3:c.460G>A	GG
	815929 CC			20	
rs3813929	NM_000868.3:c759C>T	CC	UGT1A1 *1/*2	28	
	70000 00		rs4148323	NM_001072.3:c.862-6536G>A	GG
IFNL4 rs129	379860 CC		rs1976391	NM_001072.3:c.862-9697A>G	AG
rs12979860	NM_001276254.2:c.151-152G>A	СС	VKORC1 rs9	923231 GG	
NUDT15 *1/	*3		rs7200749	NM 024006.5:c.358C>T	GG
			rs9923231	NM_001311311.1:c1639G>A	GG
rs116855232	NM_018283.3:c.415C>T	СТ	100020201		50
OPRM1 rs17	799971 AA				
rs1799971	NM_000914.4:c.118A>G	AA			

Electronically signed by:

Cathryn Jennissen in None

Methodology and limitations

This test was developed and its performance characteristics determined by OneOme, LLC, a clinical laboratory located at 807 Broadway Street NE Suite 100, Minneapolis, MN 55413. These tests have not been cleared or approved by the U.S. Food and Drug Administration. The FDA does not require this test to go through premarket FDA review. OneOme is certified under CLIA-88 and accredited by the College of American Pathologists as qualified to perform high-complexity testing. This test is used for clinical purposes and should not be regarded as investigational or for research.

Genomic DNA was analyzed by PCR using Thermo Fisher TaqMan® and/or LGC Biosearch BHQ® probe-based methods to interrogate the variant locations listed in the *Test results* table above. In addition, CYP2D6 copy number status was assessed at sites within the promoter, intron 2, intron 6, and exon 9. The test detects CYP2D6 deletions, duplications/multiplications, and hybrid alleles, but cannot differentiate duplications in the presence of a deletion.

Haplotypes, or combinations of inherited variants on a chromosome, are annotated according to legacy nomenclature for the genes and alleles in the table below.

CYP1A2	*1C, *1D, *1E, *1F, *1J, *1K, *1L, *1V, *1W
CYP2B6	*4, *5, *6, *7, *9, *18, *22, *35, *36
CYP2C9	*2, *3, *4, *5, *6, *8, *11
CYP2C19	*2, *3, *4, *4B, *10, *17
CYP2D6	*2, *2A, *3, *4, *4M, *4N, *5, *6, *6C, *7, *8, *9, *10, *11, *12, *13, *14, *15, *17, *18, *19, *29, *31, *34, *35, *36, *39, *41, *42, *59, *63, *64, *68, *69, *70, *91, *109, *114
CYP3A4	*1B, *22
CYP3A5	*3, *6, *7
CYP4F2	*3
DPYD	*2A, Asp949Val, *13, HapB3, Tyr186Cys
SLCO1B1	*1B, *5, *15, *17, *21
TPMT	*2, *3A, *3B, *3C, *4
UGT1A1	*6, *28

The test does not detect all known and unknown variations in the gene(s) tested, nor does absence of a detectable variant (designated as *1 for genes encoding drug metabolizing enzymes) rule out the presence of other, non-detected variants.

As with other common SNP genotyping techniques, these assays cannot differentiate between the maternal and paternal chromosomes. In cases where observed variants are associated with more than one haplotype, OneOme infers and reports the most likely diplotype based on published allele frequency and/or ethnicity data. Inferences with potential clinical impact are reported in the *Report and laboratory comments* section.

PCR may be subject to general interference by factors such as reaction inhibitors and low quality or quantity of extracted DNA. When present, these interferents typically yield no result rather than an inaccurate one. Very infrequent variants or polymorphisms occurring in primer- or probe-binding regions may affect testing and could produce an erroneous result or assay failure. Variant locations tested by the assay but not assigned a genotype call are reported as "No Call."

The variant detection methods validated by OneOme provide >99.9% accuracy for the adult population; however, clinical interpretation may be inaccurate for patients who have undergone or are receiving non-autologous blood transfusions, tissue, and/or organ transplant therapies. Although extremely rare, results could also be impacted by other factors not addressed above, such as laboratory error.

Pharmacogenetic correlation is largely based on studies of adult populations. Gene-drug guidance may not be informative in pediatric patients. For patients that may carry a probabilistic risk of disease, patients and providers should consider the benefits of consulting with a trained genetic counseling professional, physician, or pharmacogenomic specialist. For additional support, contact OneOme

Methodology and limitations (cont.)

through the website or by calling 844-663-6635.

OneOme liability disclaimer

The clinical annotations provided by OneOme are intended solely for use by a medical professional in the treatment of adult patients and do not constitute medical advice by OneOme. The treating provider remains ultimately responsible for all diagnosis and treatment decisions for the patient. OneOme disclaims liability for any errors, omissions or ambiguities in any translation or interpretation of a report by a third party, including without limitation direct, indirect, incidental, special, consequential or exemplary damages, whether such damages arise in contract, negligence, tort, under statute, in equity, at law or otherwise. Information included in this report is based upon scientific literature and does not take into account other genetic variants and environmental or social factors that may impact each patient. Other factors not included in this report include, but are not limited to, environmental factors (e.g., smoking), health factors (e.g., diet), social and familial factors, various medical conditions, and drug-to-drug interactions. Administration of any medication requires careful therapeutic monitoring regardless of the phenotype or genotype-derived interaction reported. As a matter of practice, OneOme will routinely update its pharmacogenomic database as new information becomes available to the scientific community. Clinical annotations, including phenotype summaries, are therefore dependent on the date of generation and/or the database version used to generate that report.